Úplné spracovanie obrazu (vopred spracované pomocou skriptov)

Tento tutoriál vysvetľuje krok za krokom, ako spracovať neupravené deep-sky fotografie, aby sa vytvoril konečný obrázok. Ide špeciálne o fotografie vytvorené fotoaparátom alebo farebnou kamerou.

- Orezanie obrázka
- Extrakcia gradientu pozadia
- Fotometrická kalibrácia
- Dekonvolúcia obrazu
- Natiahnutie histogramu
- Odstránenie zeleného odtieňa
- Úprava sýtosti farieb
- Ukladanie ako FITS, TIFF, JPEG alebo PNG.

Predpokladom ďalšej práce je obrázok, ktorý vznikol po spracovaní skriptami. Nachádza sa v pracovnom adresári SIRILu a jeho názov je result.fit.

Otvorenie obrázku na spracovanie

Dvakrát kliknite na súbor result.fit

Obrázok by sa mal zobrazovať v oblasti na ľavej strane, najskôr ako čiernobiely, na červenom kanáli. V tomto kroku je normálne vidieť takmer úplne čierny obrázok, pretože režim vykresľovania je štandardne lineárny

Zmeňte režim vykresľovania na Autostretch v spodnej časti okna

Teraz by mal vyzerať lepšie, ale stále je monochromatický. Kliknutím na kartu RGB zobrazíte farebný mix

Ak je obrázok väčšinou zelený, ako ho vidíme tu, nebojte sa, v tomto kroku je to normálne! Je to spôsobené dvojnásobným počtom zelených pixlov v Bayerovej maske.

Niekoľko poznámok pred pokračovaním: všetky nástroje na spracovanie obrázkov upravujú aktuálny obrázok. Ak ste si istí výsledkom, ktorý ste dosiahli, je vhodné uložiť obrázok v každom kroku pod novým názvom. Ak sa vám nepáči, čo ste s nástrojom urobili, môžete sa tiež vrátiť k predchádzajúcej verzii pomocou undo ikony v ľavej hornej časti okna. Rovnako však možno otvoriť obrázok uložený v predchádzajúcom kroku. Nie všetky kroky sú povinné, záleží to na vašich obrázkoch.

Orezanie obrázka

To je veľmi dôležité pre zvyšok spracovania, pretože tmavé pásy po stranách skreslia štatistiku obrazu používanú inými nástrojmi na spracovanie. Od verzie 0.99.10 by však skladaný obrázok nemal mať tmavé okraje. Napriek tomu môžu byť okraje nedokonalé práve v dôsledku sčitovania posúvaných obrázkov.

Ľavým tlačidlom myši vytvoríte oblasť orezávania obrázku na jednej z kariet Red, Green alebo Blue.

Prípadne kliknite pravým tlačidlom myši na obrázok, kliknite na Select all a zmeňte veľkosť výberu, aby ste vylúčili pruhy na boku.

Keď je oblasť správne nastavená, kliknite pravým tlačidlom myši na obrázok a na Crop:

Odstránenie gradientov v pozadí

S novými verziami 0.99.x je možné z obrázkov pred ich skladaním odstrániť prechod svetla. Tu si ukážeme odstránenie gradientu na výslednom poskladanom obrázku. Ak je výsledný obrázok výsledkom dlhého exponovania, keď sa menila pozícia parazitného zdroja svetla (napríklad žiara od mesta), bude jednoduchšie odstrániť jednoduchý prechod na každom obrázku ako odstrániť zložitý prechod na naskladanom obrázku.

Control
Participant

Participant

Participant
Participant

Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participant
Participa

Stále na jednej z kariet kanála kliknite na Image processing ponuku a potom na Background extraction...

Kliknite na Generate

SIRIL umiestni na obrázok malé zelené štvorčeky pravidelne rozmiestnené, to budú vzorky na výpočet gradientu

Ak sa vám zdá, že na hmloviny alebo galaxie je umiestnených príliš veľa štvorcov, môžete niektoré z nich odstrániť manuálne kliknutím pravým tlačidlom myši alebo znížiť hodnotu Tolerance v dialógovom okne a znova kliknúť na Generate.

Čo nám po extrakcii gradientu dáva nasledujúci obrázok:

Fotometrická kalibrácia

Existujú dva spôsoby, ako kalibrovať farby pomocou SIRILu.

- 1. Vyváženie čiernej a bielej medzi kanálmi z používateľských vstupov.
- 2. Nový spôsob od verzie 0.9.11, využívajúci fotometriu hviezd identifikovaných na obrázku po astrometrickom spracovaní, ktorý robí to isté automaticky.

Teraz použijeme fotometrickú kalibráciu.

Kliknite na a Image processing potom : Color calibrationPhotometric color calibration...

Open	- G	•	\$	Image Processing Scrip	ots 🔽			Si D:\pers
Red	Green	Blue	Rje	Asinh Transformation				
				Histogram transformation				
				Color Calibration		\mathbf{b}	Color Calibration	
				Color Saturation			Photometric Color Calibration	
Calles .				Remove Green Noise			Sall Carl	
				Negative Transformation		Ctrl+I		
				À trous vvavelets Transform	n			
		1		Banding Reduction				
				Contrast-Limited Adaptive	Histogram Equalization			
				Cosmetic Correction				
			1	Deconvolution				
				Fourier Transform				
				Median Filter				
			-	Rotational Gradient				
				Geometry		Þ		
				Background Extraction				Sec. But
				Extraction				
			4 . A.	Linear Match				
1. A. S.				RGB Compositing				
			and the	an a		a stressed		

Do oblasti vyhľadávania v hornej časti okna zadajte názov objektu, ktorý sa zobrazí na obrázku, tu M8 a potom kliknite na Search.

Ak chcete používať túto funkciu, musíte byť pripojení k internetu. SIRIL odošle niekoľko požiadaviek do astronomických databáz a zobrazí výsledky zodpovedajúce vstupu:

Kliknite na nájdený objekt v databáze Simbad (alebo Vizier), tu Lagoon Nebula.

Photometric Color Calibrat	ion						×		
▼ Image Parameters									
Q M8	0	Find							
Right Ascension:	0				÷	0.0000			
Declination:	0	- +			+	0.0000			
Resolver Name									
Simbad Lagoon Nebula									
Focal distance (mm):	1000.0								
Pivel size (um):	5.00			Resolut	tion: 1	1.031			
fine are thus	5.00								
Get Metadata From Image									
					🛃 Flip	image if i	needed		
▼ Catalogue Parameters									
Photometric Star Catalogue:	NOMAD	•							
Catalogue Limit Mag:			🛃 Auto						
▼ Star Detection									
Manual detection									
Background Reference	Background Reference								
Channel Factor Normalisa	tion								
				Clo	se	0	ĸ		

Môžete kliknúť na Get metadata from the image a získať ohniskovú vzdialenosť a veľkosť pixelov z obrázka, ak sú k dispozícii (neplatí pre fotografie fotoaparátom).

Ak metadáta nie sú k dispozícii, budete ich musieť zadať ručne

Ak potrebujete zadať veľkosť pixlov a nepoznáte ju, môžete sa pozrieť na stránku <u>https://www.digicamdb.com</u> alebo na stránku výrobcu konkrétnej kamery.

Všimnite si, že Flip image if necessary je začiarknuté. Keď je toto povolené, SIRIL zistí, či je obrázok prevrátený a ak áno, automaticky ho prevráti späť.

Napokon kliknite na OK

SIRIL obraz rozloží (môže to trvať niekoľko minút), identifikuje niektoré hviezdy v obraze a získa ich farebný profil, potom upraví vzťah obrazu medzi farebnými kanálmi, aby sa vytvorilo nové vyváženie bielej a čiernej.

23:57:07:	
23:57:21:	Catalog NOMAD size: 1224 objects
23:57:22:	614 pair matches.
23:57:22:	Inliers: 0.744
23:57:22:	Resolution: 1.996 arcsec/px
23:57:22:	Rotation: +107.91 deg (flipped)
23:57:22:	Focal: 388.47 mm
23:57:22:	Pixel size: 3.76 µm
23:57:22:	Field of view: 03d 27m 51.82s x 02d 18m 51.18s
23:57:22:	Image center: alpha: 18h03m56s, delta: -23°29'58"
23:57:23:	Flipping image and updating astrometry data.
23:57:24:	Normalizing on red channel.
23:57:24:	Applying aperture photometry to 441 stars.
23:59:57:	133 stars excluded from the calculation
23:59:57:	Color calibration factors:
23:59:57:	K0: 1.000
23:59:57:	K1: 0.712
23:59:57:	K2: 0.868
23:59:57:	Background reference:
23:59:57:	B0: 8.43396e-03
23:59:57:	B1: 6.72290e-03
23:59:58:	B2: 5.36475e-03

Ak sa astrometrické spracovanie nepodarilo, skúste zmeniť ohniskovú vzdialenosť.

Ak po niekoľkých pokusoch s rôznymi ohniskovými vzdialenosťami výpočet stále zlyhá, skúste hľadať iný objekt viditeľný na obrázku, možno hviezdu, blízko stredu.

Po fotometrickej kalibrácii by sme mali dostať farebne korektný obrázok.

Dekonvolúcia

Dekonvolúcia zlepší tvar hviezd, celkovú ostrosť obrazu a vyzdvihne viac detailov v hmlovinách. Hoci niektorí radšej používajú tento nástroj po natiahnutí histogramu, je lepšie to urobiť v tejto fáze, aby sa predišlo prílišnému zvýšeniu šumu. Aplikácia by však mala byť vykonaná s citom, ľahko môže dôjsť ku vzniku nežiadúcich artefaktov.

Open	-	•	•	Image Processing 🔻	Scripts 🔻		
Red	Green	Blue	RGE	Asinh Transformatio Histogram Transform	n nation		
				Color Calibration Color Saturation Remove Green Noise Negative Transforma	e Ition		► Ctrl+I
				À trous Wavelets Tra Banding Reduction Contrast-Limited Ad Cosmetic Correction	nsform aptive Histogr 	am Equalization	
				Deconvolution Fourier Transform Median Filter Rotational Gradient.			

Kliknite na Image processing ponuku a potom Deconvolution...:

V okne dekonvolúcie nastavte polomer a zosilnenie, pričom sa pozorne pozerajte na obrázok pri 100 % priblížení (ovládacie koliesko alebo kliknite na 1 tlačidlo na paneli s nástrojmi):

Dávajte pozor, aby ste to neprehnali, pretože dekonvolúcia ľahko vytvorí artefakty a šum, ako sú:

Kliknutím na Apply dokončite operáciu, keď vám budú hviezdy a celkový vzhľad vyhovovať.

Roztiahnutie histogramu pomocou funkcie asinh

Existuje niekoľko spôsobov, ako roztiahnuť histogram v Sirile a ako uvidíme, môžeme ich použiť postupne. Začneme s funkciou asinh (pomenovaná podľa inverznej hyperbolickej sínusovej funkcie), ktorý zachováva farby o niečo lepšie ako bežný nástroj histogramu a vyhýba sa prepáleniu jasných oblastí hmlovín alebo galaktických jadier.

Roztiahnutie histogramu je o zmene hodnôt pixelov obrázka, aby vyzeral tak jasne, ako chcete. Na začiatku sme zmenili režim vykresľovania na Autostretch. Tým sa nezmenili hodnoty pixelov, iba spôsob zobrazenia obrázka. Tu chceme urobiť podobný efekt, ale na skutočných obrazových dátach, inak bude mať uloženie obrazu za následok veľmi tmavý obraz. Zmeňte režim vykresľovania na Linear a nastavte horný hraničný kurzor na najvyššiu hodnotu (65535), aby ste videli obrázok taký, aký naozaj je:

Potom kliknite na Image processing ponuku Asinh transformation...

Upravte faktor roztiahnutia a čierny bod a súčasne sa pozerajte na obrázok, aby ste pomaly rozjasnili obrázok, ale nie úplne. To prenecháme na druhú operáciu.

S vyššie uvedenými hodnotami nám to dáva:

Dokončenie roztiahnutia histogramu pomocou nástroja histogram

Pred pokračovaním sa uistite, že stále používate Linear režim vykresľovania a že kurzor hornej hranice je nastavený na maximálnu hodnotu (65535), ako v predchádzajúcom kroku.

Kliknite na Histogram ikonu alebo Stretch histogram položku v Image processing ponuke

V okne histrogram kliknite na + tlačidlo pre priblíženie grafu a kliknite na ozubené koleso, aby ste napodobnili správanie automatického rozťahovania:

Uistite sa, že indikátor hodnoty orezania histogramu (clip) nezobrazuje hodnotu vyššiu ako 0,1 % v pravom dolnom rohu, upravte kurzor tmavých tónov, kým sa to nezlepší

Ak je hodnota orezania oveľa vyššia ako 0,1 %, uistite sa, že ste počas prvého kroku spracovania odstránili všetky čierne oblasti na okrajoch obrázka

Teraz môžete upraviť kurzor stredných tónov, aby ste zlepšili kontrast obrazu

Kurzor svetelných tónov musí byť vždy na maximálnej hodnote (úplne vpravo v grafe)

Kliknite na Apply, keď ste dosiahli výsledok, ktorý sa vám páči, a zatvorte okno.

Odstránenie zeleného šumu

Tento nástroj je ekvivalentom HLVG filtra, ktorý sa nachádza ako doplnok Photoshopu. Za normálnych okolností sa tento krok nevyžaduje, keď sa používa fotometrická kalibrácia farieb.

Kliknite na Image processing ponuku a potom Green noise removal (SCNR)...:

Predvolené hodnoty by mali byť v poriadku, kliknite na Apply:

Pozrite si výsledok na svojom obrázku:

Zmena saturácie (sýtosti) farieb

Opäť v Image processing ponuke kliknite na Color saturation...:

Hodnota nad 0 zvýši sýtosť farieb, hodnota nižšia ju zníži. Vo všeobecnosti ho ľudia chcú v tomto kroku zvýšiť, hodnota medzi 0,25 a 0,5 by mala byť v poriadku.

Parameter background factor

zabezpečuje ochranu pozadia oblohy pred zvýšenou sýtosťou farieb, čo by vo všeobecnosti znamenalo zafarbenie šumu. Zvýšenie hodnoty znamená, že iba dostatočne jasné pixely budú mať zmenenú sýtosť farieb.

Pozrite si výsledok na svojom obrázku:

Kliknite na Apply, keď ste s výsledkom spokojní, a zatvorte okno.

A nakoniec uložte obrázok

Vyberte formát súboru obrázka v závislosti od toho, čo chcete s obrázkom urobiť ďalej:

- Ak ho chcete otvoriť v inom astronomickom softvéri na spracovanie obrazu, uložte ho ako FITS,
- Ak ho chcete otvoriť vo Photoshope, uložte ho ako TIFF,
- Ak ho chcete publikovať tak, ako je, uložte ho ako JPEG alebo PNG.

Existujú dva spôsoby uloženia obrázku:

1. Prvá metóda, jednoduchšia, ale možná len pre farebné obrázky:

Kliknite pravým tlačidlom myši na obrázok RGB a kliknite na Save RGB image as...:

Ak sa rozhodnete obrázok publikovať na internete, uložte ho ako JPEG. Pomenujte obrázok, upravte hodnotu kompresie JPEG a kliknite na Save:

2. Druhá metóda, komplexnejšia

Kliknite na Save as ikonu:

Me Disk Spa	em: 883.7 MiB ace: 662.8 GiB	- + Save		32 bits		-	•	×
ence	Pre-processing	Registration	Plot	Stacking	Console			
n time: nd extra	20.75 ms. action from cha	nnel red.						
nd extra	action from cha	nnel green.						

Kliknite na Supported Image Files a vyberte požadovaný formát súboru, prípadne zadajte názov obrázka s príponou súboru:

Save File

🦱 Save File				×
Name: result.jpg				
🛅 Home	◀ \ perso siril images ▶			
🛅 Desktop	Name	Size	Туре	Modified 🔻
Documents	in process			Yesterday Yesterday
Downloads	darks			Yesterday Yesterday
🛅 Music	lights			Yesterday
Dictures				
🛅 Videos				
📕 OS (C:)				
DATA (D:)		FITS Files (*.f	it, *.fits, *.fts)	
images		BMP Files (*.	bmp)	
		DNC Files (*	Jpg, ".Jpeg)	
• • • • •		TIFE Files (*.	;c * +:co	
		Netsbas File	II, ".UIT) - (* *	*
			s (".ppm, ^.pnn	n, ".pgm)
		Supported Ir	nage Files	

Pomenujte svoj obrázok a kliknite na Save (môžete tiež zmeniť výstupný adresár):

Save File				×
Name: M8-M20_FQS106_ASI2600_	15x180s			
🛅 Home	▲ \ perso siril images >			2
🛅 Desktop	Name	Size	Туре	Modified 🔻
Documents	process flats			Yesterday Yesterday
🛅 Downloads	biases darks			Yesterday
Music	lights			Yesterday
Pictures				
🛅 Videos				
OS (C:)				
DATA (D:)				
🛅 images				
		JPEG Files (*	.jpg, jpeg)	•
			Cancel	Save

Upravte úroveň kompresie a kliknite na Save:

Toto je koniec!

Tu je výsledok! Najprv nespracovaný obrázok s jednou expozíciou, potom spracovaný obrázok vyrobený z 15 x 3-minútových expozícií.

